歡迎光臨管理范文網(wǎng)
當前位置:工作總結 > 總結大全 > 總結范文

數(shù)學必修二知識總結(十四篇)

發(fā)布時間:2023-04-02 19:15:09 查看人數(shù):12

數(shù)學必修二知識總結

【第1篇 人教版高一數(shù)學必修二知識點總結

導語青春是一場遠行,回不去了。青春是一場相逢,忘不掉了。但青春卻留給我們最寶貴的友情。友情其實很簡單,只要那么一聲簡短的問候、一句輕輕的諒解、一份淡淡的惦記,就足矣。當我們在畢業(yè)季痛哭流涕地說出再見之后,請不要讓再見成了再也不見。這篇《人教版高一數(shù)學必修二知識點總結》是高一頻道為你整理的,希望你喜歡!

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

多面體

1、棱柱

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交于一點。側面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。

【第2篇 高三數(shù)學必修二知識點總結:立體幾何初步

導語高三的日子是苦的,有剛入高三時的迷茫和壓抑,有成績失意時的沉默不語,有晚上奮戰(zhàn)到一兩點的精神肉體雙重壓力,也有在清晨凜冽的寒風中上學的艱苦經(jīng)歷。在奮筆疾書中得到知識的快樂,也是一種在巨大壓力下顯得茫然無助的痛苦。高三頻道為你整理《高三數(shù)學必修二知識點總結:立體幾何初步》希望對你有幫助!

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與_軸平行的線段仍然與_平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

(4)球體的表面積和體積公式:v=;s=

5、空間點、直線、平面的位置關系

(1)平面

①平面的概念:a.描述性說明;b.平面是無限伸展的;

②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內);也可以用兩個相對頂點的字母來表示,如平面bc。

③點與平面的關系:點a在平面內,記作;點不在平面內,記作

點與直線的關系:點a的直線l上,記作:a∈l;點a在直線l外,記作al;

直線與平面的關系:直線l在平面α內,記作lα;直線l不在平面α內,記作lα。

(2)公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。(即直線在平面內,或者平面經(jīng)過直線)

應用:檢驗桌面是否平;判斷直線是否在平面內。用符號語言表示公理1:

(3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理2及其推論作用:①它是空間內確定平面的依據(jù)②它是證明平面重合的依據(jù)

(4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。符號語言:

公理3的作用:①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關系:交線公共點。

③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

(5)公理4:平行于同一條直線的兩條直線互相平行

(6)空間直線與直線之間的位置關系

①異面直線定義:不同在任何一個平面內的兩條直線

②異面直線性質:既不平行,又不相交。

③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

④異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點o,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理

(2)在異面直線所成角定義中,空間一點o是任取的,而和點o的位置無關。

(3)求異面直線所成角步驟:

a、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。

b、證明作出的角即為所求角

c、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

(8)空間直線與平面之間的位置關系

直線在平面內——有無數(shù)個公共點.

三種位置關系的符號表示:aαa∩α=aa∥α

(9)平面與平面之間的位置關系:平行——沒有公共點;α∥β相交——有一條公共直線。α∩β=b

6、空間中的平行問題

(1)直線與平面平行的判定及其性質

線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。線線平行線面平行

線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

線面平行線線平行

(2)平面與平面平行的判定及其性質

兩個平面平行的判定定理(1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行→面面平行),

(2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質定理(1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關系的判定和性質定理

①線面垂直判定定理和性質定理

判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。

性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

②面面垂直的判定定理和性質定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

8、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點o,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為。

②平面的垂線與平面所成的角:規(guī)定為。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

解題時,注意挖掘題設中兩個信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

9、空間直角坐標系

(1)定義:如圖,是單位正方體.以a為原點,分別以od,o,ob的方向為正方向,

建立三條數(shù)軸。這時建立了一個空間直角坐標系o_yz.

1)o叫做坐標原點2)_軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。

(2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為_軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

(3)任意點坐標表示:空間一點m的坐標可以用有序實數(shù)組來表示,有序實數(shù)組叫做點m在此空間直角坐標系中的坐標,記作(_叫做點m的橫坐標,y叫做點m的縱坐標,z叫做點m的豎坐標)

(4)空間兩點距離坐標公式

【第3篇 2023年高一數(shù)學必修二知識點總結

一、直線與方程

(1)直線的傾斜角

定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與_軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180° (2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即k?tan?。斜率反映直線與軸的傾斜程度。

當???0?,90??時,k?0; 當???90?,180??時,k?0; 當??90?時,k不存在。

y?y1

(_1?_2) ②過兩點的直線的斜率公式:k?2

_2?_1注意下面四點:(1)當_1?_2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°; (2)k與p1、p2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。 (3)直線方程

①點斜式:y?y1?k(_?_1)直線斜率k,且過點?_1,y1?

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于_1,所以它的方程是_=_1。

②斜截式:y?k_?b,直線斜率為k,直線在y軸上的截距為b ③兩點式:④截矩式:

y?y1y2?y1

_a?y

?

_?_1_2?_1

(_1?_2,y1?y2)直線兩點?_1,y1?,?_2,y2?

?1 b

其中直線l與_軸交于點(a,0),與y軸交于點(0,b),即l與_軸、y軸的截距分別為a,b。

⑤一般式:a_?by?c?0(a,b不全為0)

1各式的適用范圍 ○2特殊的方程如: 注意:○

平行于_軸的直線:y?b(b為常數(shù)); 平行于y軸的直線:_?a(a為常數(shù)); (5)直線系方程:即具有某一共同性質的直線 (一)平行直線系

平行于已知直線a0_?b0y?c0?0(a0,b0是不全為0的常數(shù))的直線系:

a0_?b0y?c?0(c為常數(shù))

(二)過定點的直線系

(ⅰ)斜率為k的直線系:y?y0?k?_?_0?,直線過定點?_0,y0?;

(ⅱ)過兩條直線l1:a1_?b1y?c1?0,l2:a2_?b2y?c2?0的交點的直線系方程為

,其中直線l2不在直線系中。 ?a1_?b1y?c1????a2_?b2y?c2??0(?為參數(shù))(6)兩直線平行與垂直當l1:y?k1_?b1,l2:y?k2_?b2時, l1//l2?k1?k2,b1?b2;l1?l2?k1k2??1

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。 (7)兩條直線的交點

l1:a1_?b1y?c1?0 l2:a2_?b2y?c2?0相交 交點坐標即方程組??

a1_?b1y?c1?0

的一組解。

?a2_?b2y?c2?0

方程組無解?l1//l2 ; 方程組有無數(shù)解?l1與l2重合 (8)兩點間距離公式:設a(_1,y1),b是平面直角坐標系中的兩個點,

(_2,y2)

則|ab|?

(9)點到直線距離公式:一點p?_0,y0?到直線l1:a_?by?c?0的距離d(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解。

?

a_0?by0?c

a?b

2

2

二、圓的方程

1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的

半徑。

2、圓的方程

(1)標準方程?_?a???y?b??r2,圓心?a,b?,半徑為r;

2

2

(2)一般方程_2?y2?d_?ey?f?0 當d?e

22

2

?4f?0時,方程表示圓,此時圓心為?

??

?

2

2

d2

,?

1e?,半徑為r??

22?

d

2

?e

2

?4f

當d?e?4f?0時,表示一個點; 當d?e?4f?0時,方程不表示任何圖

形。

(3)求圓方程的方法: 一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程, 需求出a,b,r;若利用一般方程,需要求出d,e,f;

另外要注意多利用圓的幾何性質:如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。 3、直線與圓的位置關系:

直線與圓的位置關系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

(1)設直線l:a_?by?c?0,圓c:?_?a?2??y?b?2?r2,圓心c?a,b?到l的距離為

d?

aa?bb?ca?b

2

2

2

,則有d?r?l與c相離;d?r?l與c相切;d?r?l與c相交

2

2

(2)設直線l:a_?by?c?0,圓c:?_?a???y?b??r2,先將方程聯(lián)立消元,得到一個一元二次方程之后,令其中的判別式為?,則有

??0?l與c相離;??0?l與c相切;??0?l與c相交

2

注:如果圓心的位置在原點,可使用公式__0?yy0?r去解直線與圓相切的問題,其中?_0,y0?表示切點坐標,r表示半徑。

(3)過圓上一點的切線方程:

22

①圓_2+y2=r,圓上一點為(_0,y0),則過此點的切線方程為__0?yy0?r (課本命題).

2222

②圓(_-a)+(y-b)=r,圓上一點為(_0,y0),則過此點的切線方程為(_0-a)(_-a)+(y0-b)(y-b)= r (課本命題的推廣).4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。 設圓c1:?_?a1?2??y?b1?2?r2,c2:?_?a2?2??y?b2?2?r2 兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。 當d?r?r時兩圓外離,此時有公切線四條;

當d?r?r時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條; 當r?r?d?r?r時兩圓相交,連心線垂直平分公共弦,有兩條外公切線; 當d?r?r時,兩圓內切,連心線經(jīng)過切點,只有一條公切線; 當d?r?r時,兩圓內含; 當d?0時,為同心圓。

三、立體幾何初步

1、柱、錐、臺、球的結構特征

(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共

邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱abcde?a'b'c'd'e'或用對角線的端點字母,如五棱柱

'ad

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且

相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐p?abcde

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

截面距離與高的比的平方。

(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

'''''

表示:用各頂點字母,如五棱臺p?abcde

幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點 (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何

'

'

'

'

'

第3 / 7頁

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。 (6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。 (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。 2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度; 俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與_軸平行的線段仍然與_平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)

'

s直棱柱側面積

s正棱臺側面積

?12

?ch s圓柱側?2?rh s正棱錐側面積

(c1?c2)h' s圓臺側面積?(r?r)?l

?

12

ch' s圓錐側面積

??rl

s圓柱表?2?r?r?l? s圓錐表??r?r?l? s圓臺表???r2?rl?rl?r2?

(3)柱體、錐體、臺體的體積公式 ??v柱?sh v圓柱?sh

v臺

?

13(s?

'

2

1

r h v錐?sh v圓錐?1?r2h

3

3

s)h v圓臺?

13

(s?

'

s)h?

13

?(r?rr?r)h

22

(4)球體的表面積和體積公式:v球4、空間點、直線、平面的位置關系

=

43

?r

3

; s

球面

=4?r2

第4 / 7頁

(1)平面

① 平面的概念: a.描述性說明; b.平面是無限伸展的;

② 平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內);

也可以用兩個相對頂點的字母來表示,如平面bc。

③ 點與平面的關系:點a在平面?內,記作a??;點a不在平面?內,記作a?? 點與直線的關系:點a的直線l上,記作:a∈l; 點a在直線l外,記作a?l;

直線與平面的關系:直線l在平面α內,記作l?α;直線l不在平面α內,記作l?α。 (2)公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。

(即直線在平面內,或者平面經(jīng)過直線)

應用:檢驗桌面是否平; 判斷直線是否在平面內

用符號語言表示公理1:a?l,b?l,a??,b???l?? (3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理2及其推論作用:①它是空間內確定平面的依據(jù) ②它是證明平面重合的依據(jù) (4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。

符號語言:p?a?b?a?b?l,p?l 公理3的作用:

①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關系:交線公共點。 ③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。 (5)公理4:平行于同一條直線的兩條直線互相平行 (6)空間直線與直線之間的位置關系

① 異面直線定義:不同在任何一個平面內的兩條直線 ② 異面直線性質:既不平行,又不相交。

③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線 ④ 異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點o,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。 說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理 (2)在異面直線所成角定義中,空間一點o是任取的,而和點o的位置無關。 ②求異面直線所成角步驟:

a、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 b、證明作出的角即為所求角 c、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。 (8)空間直線與平面之間的位置關系

直線在平面內——有無數(shù)個公共點.

第5 / 7頁

三種位置關系的符號表示:a?α a∩α=a a∥α

(9)平面與平面之間的位置關系:平行——沒有公共點;α∥β

相交——有一條公共直線。α∩β=b

5、空間中的平行問題

(1)直線與平面平行的判定及其性質

線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。

線線平行?線面平行

線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

那么這條直線和交線平行。線面平行?線線平行

(2)平面與平面平行的判定及其性質 兩個平面平行的判定定理

(1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。 (線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行, 兩個平面平行的性質定理

(1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行) (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行) 7、空間中的垂直問題

(1)線線、面面、線面垂直的定義 ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。 ②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。 (2)垂直關系的判定和性質定理 ①線面垂直判定定理和性質定理 判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。 性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。 ②面面垂直的判定定理和性質定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。 性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為0?。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。 ③兩條異面直線所成的角:過空間任意一點o,分別作與兩條異面直線a,b平行的直線a?,b?,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

??

①平面的平行線與平面所成的角:規(guī)定為0。 ②平面的垂線與平面所成的角:規(guī)定為90。 ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

第6 / 7頁

在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線, 在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。 (3)二面角和二面角的平面角 ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。 ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。 ③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角 ④求二面角的方法

定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角 垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角 7、空間直角坐標系

(1)定義:如圖,obcd?d,a,b,c,是單位正方體.以a為原點, 分別以od,oa,,ob的方向為正方向,建立三條數(shù)軸_軸.y軸.z軸。 這時建立了一個空間直角坐標系o_yz.

1)o叫做坐標原點 2)_ 軸,y軸,z軸叫做坐標軸. 3)過每兩個坐標軸的平面叫做坐標面。

(2)右手表示法: 令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為_軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

(3)任意點坐標表示:空間一點m的坐標可以用有序實數(shù)組(_,y,z)來表示,有序實數(shù)組(_,y,z) 叫做點m在此空間直角坐標系中的坐標,記作m(_,y,z)(_叫做點m的橫坐標,y叫做點m的縱坐標,z叫做點m的豎坐標)

(4)空間兩點距離坐標公式:d?(_2?_1)2?(y2?y1)2?(z2?z1)2

【第4篇 高二數(shù)學必修二知識點總結整理

考點一:向量的概念、向量的基本定理

內容解讀了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的??杀容^大小。

考點二:向量的運算

內容解讀向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關系,并理解其幾何意義,掌握數(shù)量積的坐標表達式,會進行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關系。

命題規(guī)律命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標運算,有時也會與其它內容相結合。

考點三:定比分點

內容解讀掌握線段的定比分點和中點坐標公式,并能熟練應用,求點分有向線段所成比時,可借助圖形來幫助理解。

命題規(guī)律重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

考點四:向量與三角函數(shù)的綜合問題

內容解讀向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達到了高考中試題的覆蓋面的要求。

命題規(guī)律命題以三角函數(shù)作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數(shù)圖象平移結合的問題,屬中檔偏易題。

考點五:平面向量與函數(shù)問題的交匯

內容解讀平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結合的問題為主,要注意自變量的取值范圍。

命題規(guī)律命題多以解答題為主,屬中檔題。

考點六:平面向量在平面幾何中的應用

內容解讀向量的坐標表示實際上就是向量的代數(shù)表示.在引入向量的坐標表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當?shù)淖鴺讼抵?,賦予幾何圖形有關點與平面向量具體的坐標,這樣將有關平面幾何問題轉化為相應的代數(shù)運算和向量運算,從而使問題得到解決.

命題規(guī)律命題多以解答題為主,屬中等偏難的試題。

【第5篇 高一下冊數(shù)學必修二知識點總結

導語仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負;只有放寬視野,把天空和大地盡收眼底,才能在蒼穹沃土之間找到你真正的位置。無需自卑,不要自負,堅持自信。高一頻道為你整理了《高一下冊數(shù)學必修二知識點總結》希望你對你的學習有所幫助!

定理總結

公理1:如果一條直線上的兩點在一個平面內,那么這條直線上的所有的點都在這個平面內。公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。公理3:過不在同一條直線上的三個點,有且只有一個平面。

推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

推論2:經(jīng)過兩條相交直線,有且只有一個平面。

推論3:經(jīng)過兩條平行直線,有且只有一個平面。

公理4:平行于同一條直線的兩條直線互相平行。

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

空間兩直線的位置關系

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

高一數(shù)學必修二知識點總結:兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)

多面體

1、棱柱

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交于一點。側面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

【第6篇 2023高一數(shù)學必修二知識點總結

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與_軸平行的線段仍然與_平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數(shù)學必修二知識點總結

【第7篇 高二年級數(shù)學必修二知識點總結

高二年級數(shù)學必修二知識點總結

基本概念

公理1:如果一條直線上的兩點在一個平面內,那么這條直線上的所有的點都在這個平面內。

公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

公理3:過不在同一條直線上的三個點,有且只有一個平面。

推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

推論2:經(jīng)過兩條相交直線,有且只有一個平面。

推論3:經(jīng)過兩條平行直線,有且只有一個平面。

公理4:平行于同一條直線的兩條直線互相平行。

等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

【第8篇 高一數(shù)學必修二知識點總結:立體幾何

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與_軸平行的線段仍然與_平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

【第9篇 高一數(shù)學必修二知識點歸納總結

導語高一新生要根據(jù)自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。今天為各位同學整理了《高一數(shù)學必修二知識點歸納總結》,希望對您的學習有所幫助!

高一數(shù)學必修二知識點歸納總結(一)

1.并集

(1)并集的定義

由所有屬于集合a或屬于集合b的元素所組成的集合稱為集合a與b的并集,記作a∪b(讀作'a并b');

(2)并集的符號表示

a∪b={_|_∈a或_∈b}.

并集定義的數(shù)學表達式中'或'字的意義應引起注意,用它連接的并列成分之間不一定是互相排斥的.

_∈a,或_∈b包括如下三種情況:

①_∈a,但_b;②_∈b,但_a;③_∈a,且_∈b.

由集合a中元素的互異性知,a與b的公共元素在a∪b中只出現(xiàn)一次,因此,a∪b是由所有至少屬于a、b兩者之一的元素組成的集合.

例如,設a={3,5,6,8},b={4,5,7,8},則a∪b={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

2.交集

利用下圖類比并集的概念引出交集的概念.

(1)交集的定義

由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集,記作a∩b(讀作'a交b').

(2)交集的符號表示

a∩b={_|_∈a且_∈b}.

高一數(shù)學必修二知識點歸納總結(二)

1.函數(shù)的奇偶性

(1)若f(_)是偶函數(shù),那么f(_)=f(-_);

(2)若f(_)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(_)±f(-_)=0或(f(_)≠0);

(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;

2.復合函數(shù)的有關問題

(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域為[a,b],求f(_)的定義域,相當于_∈[a,b]時,求g(_)的值域(即f(_)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復合函數(shù)的單調性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像c1與c2的對稱性,即證明c1上任意點關于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;

(3)曲線c1:f(_,y)=0,關于y=_+a(y=-_+a)的對稱曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);

(4)曲線c1:f(_,y)=0關于點(a,b)的對稱曲線c2方程為:f(2a-_,2b-y)=0;

(5)若函數(shù)y=f(_)對_∈r時,f(a+_)=f(a-_)恒成立,則y=f(_)圖像關于直線_=a對稱,高中數(shù)學;

(6)函數(shù)y=f(_-a)與y=f(b-_)的圖像關于直線_=對稱;

【第10篇 高一數(shù)學必修二知識點總結大全

導語高中數(shù)學知識比較多,高一數(shù)學必修二需要記憶的知識點原理也很多,做好知識點的整理能夠幫助同學們了解數(shù)學大體結構,更好的學習數(shù)學。下面是為你推薦高一數(shù)學必修二知識點歸納,希望能幫到你。

高一數(shù)學必修二空間兩直線的位置關系知識點歸納

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

高一數(shù)學必修二知識點總結:多面體

1、棱柱

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交于一點。側面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高一數(shù)學必修二知識點總結:兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

高一數(shù)學必修二知識點總結:兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。

【第11篇 高一年級數(shù)學必修二知識點總結

導語正向思考的力量,勝過一個負面思想的力量數(shù)百倍,那會降低我們某種程度的憂慮。而憂愁像嬰兒一樣,會慢慢被養(yǎng)大的。記?。簞e帶著憂愁入睡,想想明早天邊的彩虹吧。高一頻道為你整理了《高一年級數(shù)學必修二知識點總結》,希望可以幫到你!

空間兩直線的位置關系知識點歸納

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

多面體

1、棱柱

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交于一點。側面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。

【第12篇 高二上學期數(shù)學必修二知識點總結

1、直線的傾斜角的概念:當直線l與_軸相交時,取_軸作為基準,_軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與_軸平行或重合時,規(guī)定α=0°.

2、傾斜角α的取值范圍:0°≤α<180°.

當直線l與_軸垂直時,α=90°.

3、直線的斜率:

一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα

⑴當直線l與_軸平行或重合時,α=0°,k=tan0°=0;

⑵當直線l與_軸垂直時,α=90°,k不存在.

由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.

4、直線的斜率公式:

給定兩點p1(_1,y1),p2(_2,y2),_1≠_2,用兩點的坐標來表示直線p1p2的斜率:

斜率公式:

3.1.2兩條直線的平行與垂直

1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

注意:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論并不成立.即如果k1=k2,那么一定有l(wèi)1∥l2

2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數(shù);反之,如果它們的斜率互為負倒數(shù),那么它們互相垂直,即

3.2.1直線的點斜式方程

1、直線的點斜式方程:直線經(jīng)過點且斜率為

2、、直線的斜截式方程:已知直線的斜率為

3.2.2直線的兩點式方程

1、直線的兩點式方程:已知兩點

2、直線的截距式方程:已知直線

3.2.3直線的一般式方程

1、直線的一般式方程:關于_、y的二元一次方程

(a,b不同時為0)

2、各種直線方程之間的互化。

3.3直線的交點坐標與距離公式

3.3.1兩直線的交點坐標

1、給出例題:兩直線交點坐標

l1:3_+4y-2=0

l1:2_+y+2=0

解:解方程組

得_=-2,y=2

所以l1與l2的交點坐標為m(-2,2)

3.3.2兩點間距離

兩點間的距離公式

3.3.3點到直線的距離公式

1.點到直線距離公式:

2、兩平行線間的距離公式:

【第13篇 高一人教版數(shù)學必修二知識點總結

1:一般式:a_+by+c=0(a、b不同時為0)適用于所有直線

k=-a/b,b=-c/b

a1/a2=b1/b2≠c1/c2←→兩直線平行

a1/a2=b1/b2=c1/c2←→兩直線重合

橫截距a=-c/a

縱截距b=-c/b

2:點斜式:y-y0=k(_-_0)適用于不垂直于_軸的直線

表示斜率為k,且過(_0,y0)的直線

3:截距式:_/a+y/b=1適用于不過原點或不垂直于_軸、y軸的直線

表示與_軸、y軸相交,且_軸截距為a,y軸截距為b的直線

4:斜截式:y=k_+b適用于不垂直于_軸的直線

表示斜率為k且y軸截距為b的直線

5:兩點式:適用于不垂直于_軸、y軸的直線

表示過(_1,y1)和(_2,y2)的直線

(y-y1)/(y2-y1)=(_-_1)/(_2-_1)(_1≠_2,y1≠y2)

6:交點式:f1(_,y)_m+f2(_,y)=0適用于任何直線

表示過直線f1(_,y)=0與直線f2(_,y)=0的交點的直線

7:點平式:f(_,y)-f(_0,y0)=0適用于任何直線

表示過點(_0,y0)且與直線f(_,y)=0平行的直線

8:法線式:_·cosα+ysinα-p=0適用于不平行于坐標軸的直線

過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

9:點向式:(_-_0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

表示過點(_0,y0)且方向向量為(u,v)的直線

10:法向式:a(_-_0)+b(y-y0)=0適用于任何直線

表示過點(_0,y0)且與向量(a,b)垂直的直線

11:點到直線距離

點p(_0,y0)到直線ι:a_+by+c=0的距離

d=|a_0+by0+c|/√a2+b2

兩平行線之間距離

若兩平行直線的方程分別為:

a_+by+c1=oa_+by+c2=0則

這兩條平行直線間的距離d為:

d=丨c1-c2丨/√(a2+b2)

12:各種不同形式的直線方程的局限性:

(1)點斜式和斜截式都不能表示斜率不存在的直線;

(2)兩點式不能表示與坐標軸平行的直線;

(3)截距式不能表示與坐標軸平行或過原點的直線;

(4)直線方程的一般式中系數(shù)a、b不能同時為零.

13:位置關系

若直線l1:a1_+b1y+c1=0與直線l2:a2_+b2y+c2=0

1.當a1b2-a2b1≠0時,相交

2.a1/a2=b1/b2≠c1/c2,平行

3.a1/a2=b1/b2=c1/c2,重合

4.a1a2+b1b2=0,垂直

【第14篇 高三數(shù)學必修二知識點總結

1.高三數(shù)學必修二知識點總結

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無序性

說明:

(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:a={我校的'籃球隊員},b={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:n

正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實數(shù)集r

關于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a記作a∈a,相反,a不屬于集合a記作a?a

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學式子描述法:例:不等式_-3>2的'解集是{_?r_-3>2}或{__-3>2}

4、集合的分類:

1.有限集含有有限個元素的集合

2.無限集含有無限個元素的集合

3.空集不含任何元素的集合例:{__2=-5}

二、集合間的基本關系

1.“包含”關系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關系(5≥5,且5≤5,則5=5)

實例:設a={__2-1=0}b={-1,1}“元素相同”

結論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b

①任何一個集合是它本身的子集。aía

②真子集:如果aíb,且a1b那就說集合a是集合b的真子集,記作ab(或ba)

③如果aíb,bíc,那么aíc

④如果aíb同時bía那么a=b

3.不含任何元素的集合叫做空集,記為φ

2.高三數(shù)學必修二知識點總結

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)應用

能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。

數(shù)列

(1)數(shù)列的概念和簡單表示法。

①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式)。

②了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。

(2)等差數(shù)列、等比數(shù)列。

①理解等差數(shù)列、等比數(shù)列的概念。

②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式。

③能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題。

④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系。

不等關系

一元二次不等式

①會從實際情境中抽象出一元二次不等式模型。

②通過函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系。

③會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖。

二元一次不等式組與簡單線性規(guī)劃問題

①會從實際情境中抽象出二元一次不等式組。

②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。

③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決。

基本不等式:

①了解基本不等式的證明過程。

②會用基本不等式解決簡單的(?。┲祮栴}圓的輔助線一般為連圓心與切線或者連圓心與弦中點。

3.高三數(shù)學必修二知識點總結

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有無數(shù)個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

4.高三數(shù)學必修二知識點總結

(1)必然事件:在條件s下,一定會發(fā)生的事件,叫相對于條件s的必然事件;

(2)不可能事件:在條件s下,一定不會發(fā)生的事件,叫相對于條件s的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件s的確定事件;

(4)隨機事件:在條件s下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件s的隨機事件;

(5)頻數(shù)與頻率:在相同的條件s下重復n次試驗,觀察某一事件a是否出現(xiàn),稱n次試驗中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);稱事件a出現(xiàn)的比例fn(a)=nna為事件a出現(xiàn)的概率:對于給定的隨機事件a,如果隨著試驗次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作p(a),稱為事件a的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)na與試驗總次數(shù)n的比值nna,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。

5.高三數(shù)學必修二知識點總結

等比數(shù)列

1、等比中項

如果在a與b中間插入一個數(shù)g,使a,g,b成等比數(shù)列,那么g叫做a與b的等比中項。

有關系:

注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以g2=ab是a,g,b三數(shù)成等比數(shù)列的必要不充分條件。

2、等比數(shù)列通項公式

an=a1_q’(n—1)(其中首項是a1,公比是q)

an=sn—s(n—1)(n≥2)

前n項和

當q≠1時,等比數(shù)列的前n項和的公式為

sn=a1(1—q’n)/(1—q)=(a1—a1_q’n)/(1—q)(q≠1)

當q=1時,等比數(shù)列的前n項和的公式為

sn=na1

3、等比數(shù)列前n項和與通項的關系

an=a1=s1(n=1)

an=sn—s(n—1)(n≥2)

4、等比數(shù)列性質

(1)若m、n、p、q∈n_,且m+n=p+q,則am·an=ap·aq;

(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)c為底,用一個等差數(shù)列的各項做指數(shù)構造冪can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。

(5)等比數(shù)列前n項之和sn=a1(1—q’n)/(1—q)

(6)任意兩項am,an的關系為an=am·q’(n—m)

(7)在等比數(shù)列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

數(shù)學必修二知識總結(十四篇)

導語青春是一場遠行,回不去了。青春是一場相逢,忘不掉了。但青春卻留給我們最寶貴的友情。友情其實很簡單,只要那么一聲簡短的問候、一句輕輕的諒解、一份淡淡的惦記,就足…
推薦度:
點擊下載文檔文檔為doc格式

相關數(shù)學必修二知識信息

  • 數(shù)學必修二知識總結(十四篇)
  • 數(shù)學必修二知識總結(十四篇)12人關注

    導語青春是一場遠行,回不去了。青春是一場相逢,忘不掉了。但青春卻留給我們最寶貴的友情。友情其實很簡單,只要那么一聲簡短的問候、一句輕輕的諒解、一份淡淡的惦記 ...[更多]

總結范文熱門信息