- 目錄
【第1篇 九年級(jí)數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
關(guān)于九年級(jí)數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)。旋轉(zhuǎn)一章就來認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱和中心對(duì)稱圖形。
23.1旋轉(zhuǎn)一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的`性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
23.2中心對(duì)稱一節(jié)首先通過實(shí)例介紹中心對(duì)稱的概念。然后讓學(xué)生探究中心對(duì)稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對(duì)稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對(duì)稱圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱的圖形的方法。
23.3課題學(xué)習(xí) 圖案設(shè)計(jì)一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
【第2篇 旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)是被很多人稱之?dāng)r路虎的一門科目,同學(xué)們?cè)谡莆諗?shù)學(xué)知識(shí)點(diǎn)方面還很欠缺,為此小編為大家整理了初三年級(jí)數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)。旋轉(zhuǎn)一章就來認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱和中心對(duì)稱圖形。
23.1旋轉(zhuǎn)一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
23.2中心對(duì)稱一節(jié)首先通過實(shí)例介紹中心對(duì)稱的概念。然后讓學(xué)生探究中心對(duì)稱的'性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對(duì)稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對(duì)稱圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱的圖形的方法。
23.3課題學(xué)習(xí) 圖案設(shè)計(jì)一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
以上內(nèi)容由數(shù)學(xué)網(wǎng)獨(dú)家專供,希望這篇初三年級(jí)數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)能夠幫助到大家。
【第3篇 平移與旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
平移與旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
旋轉(zhuǎn)
1、旋轉(zhuǎn)的定義:
在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
2、旋轉(zhuǎn)的性質(zhì):
旋轉(zhuǎn)后得到的圖形與原圖形之間有:對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,旋轉(zhuǎn)角相等。
中心對(duì)稱
1、中心對(duì)稱的定義:
如果一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么這兩個(gè)圖形叫做中心對(duì)稱。
2、中心對(duì)稱圖形的`定義:
如果一個(gè)圖形繞一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,這個(gè)圖形叫做中心對(duì)稱圖形。
3、中心對(duì)稱的性質(zhì):
在中心對(duì)稱的兩個(gè)圖形中,連結(jié)對(duì)稱點(diǎn)的線段都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。
軸對(duì)稱
1、軸對(duì)稱的定義:
如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì) 稱圖形,這條直線叫做對(duì)稱軸。
2、軸對(duì)稱圖形的性質(zhì):
①角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。
②線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。
③等腰三角形的“三線合一”。
【第4篇 數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)
學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)。旋轉(zhuǎn)一章就來認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱和中心對(duì)稱圖形。
23.1旋轉(zhuǎn)一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
23.2中心對(duì)稱一節(jié)首先通過實(shí)例介紹中心對(duì)稱的概念。然后讓學(xué)生探究中心對(duì)稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對(duì)稱的`圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對(duì)稱圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱的圖形的方法。
23.3課題學(xué)習(xí) 圖案設(shè)計(jì)一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
初中九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之旋轉(zhuǎn)就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。
【第5篇 初中數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)歸納總結(jié)
初中數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)歸納總結(jié)
旋轉(zhuǎn)章節(jié)的要求是讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察。那么接下來的旋轉(zhuǎn)內(nèi)容請(qǐng)同學(xué)們認(rèn)真記憶了。
旋轉(zhuǎn)知識(shí)概念
1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的.位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段的長(zhǎng)度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)
2.旋轉(zhuǎn)對(duì)稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。
3.中心對(duì)稱圖形與中心對(duì)稱:
中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。
中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。
4.中心對(duì)稱的性質(zhì):
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同一直線上)且相等。
【第6篇 2023中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):旋轉(zhuǎn)、中心對(duì)稱
1、概念:
把一個(gè)圖形繞著某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角。
2、旋轉(zhuǎn)的性質(zhì):
(1) 旋轉(zhuǎn)前后的兩個(gè)圖形是全等形。
(2) 兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
(3) 兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角。
3、中心對(duì)稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。
這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。
4、中心對(duì)稱的性質(zhì):
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分。
(2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形。
5、中心對(duì)稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。