- 目錄
【第1篇 2023中考數學命題型考點和易錯點總結(三)
函數
易錯點1:各個待定系數表示的的意義。
易錯點2:熟練掌握各種函數解析式的求法,有幾個的待定系數就要幾個點值。
易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。
易錯點4:兩個變量利用函數模型解實際問題,注意區(qū)別方程、函數、不等式模型解決不等領域的問題。
易錯點5:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯點6:與坐標軸交點坐標一定要會求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。
易錯點7:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。
易錯點8:自變量的取值范圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。
【第2篇 2023中考數學命題型考點和易錯點總結(四)
三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。求最短距離的方法。
易錯點3:三角形的內角和,三角形的分類與三角形內外角性質,特別關注外角性質中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質,三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數的結合。根據邊邊角不能得到兩個三角形全等。
易錯點5:兩個角相等和平行經常是相似的基本構成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質,運用等腰(等邊)三角形的判定與性質解決有關計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數量關系,解決與面積有關的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數,開放性問題,探索性問題結合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數的定義中對應線段的比經常出錯以及特殊角的三角函數值。
【第3篇 2023中考數學命題型考點和易錯點總結(一)
1、數與式
易錯點1:有理數、無理數以及實數的有關概念理解錯誤,相反數、倒數、絕對值的意義概念混淆。弄不清絕對值與數的分類。選擇題考得比較多。
易錯點2:關于實數的運算,要掌握好與實數的有關概念、性質,靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術平方根、立方根的區(qū)別。
易錯點4:分式值為零時易忽略分母不能為零。
易錯點5:分式運算要注意運算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題易考。
易錯點6:非負數的性質:幾個非負數的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題易考。五個基本數的計算:0指數,三角函數,絕對值,負指數,二次根式的化簡。
易錯點8:科學記數法,精確度。這個知道就好!
易錯點9:代入求值要使式子有意義。各種數式的計算方法要掌握,一定要注意計算順序。
【第4篇 2023中考數學命題型考點和易錯點總結(二)
方程(組)與不等式(組)
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質時,兩邊同除以一個數必須要注意不能為o的情況,還要關注解方程與方程組的基本思想。消元降次的主要陷阱在于消除了一個帶_公因式時回頭檢驗!
易錯點3:運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。
易錯點4:關于一元二次方程的取值范圍的題目易忽視二次項系數不為0。
易錯點5:關于一元一次不等式組有解、無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分數相相當于括號,易忘記根檢驗,導致運算結果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數軸。
易錯點8:利用函數圖象求不等式的解集和方程的解。