【第1篇 初中數(shù)學軸對稱知識點的歸納總結(jié)
初中數(shù)學軸對稱知識點的歸納總結(jié)
初中數(shù)學軸對稱知識點歸納
軸對稱章節(jié)要求正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學問題。那么接下來的軸對稱內(nèi)容請同學們認真記憶了。
軸對稱
1.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質(zhì): (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內(nèi)角相等,等于60°,
7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的`直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學生在建立在軸對稱概念的基礎上,能夠?qū)ι钪械膱D形進行分析鑒賞,親身經(jīng)歷數(shù)學美。接下來的初中數(shù)學知識更加有吸引力,請大家繼續(xù)關注哦。
【第2篇 軸對稱知識點總結(jié)
軸對稱知識點總結(jié)
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關于某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(_,y)關于_軸對稱的點的坐標為(_,-y)
點(_,y)關于y軸對稱的.點的坐標為(-_,y)
點(_,y)關于原點軸對稱的點的坐標為(-_,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內(nèi)角相等,等于60,
12.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等于斜邊的一半。
14.直角三角形斜邊上的中線等于斜邊的一半
【第3篇 數(shù)學軸對稱知識點總結(jié)
數(shù)學軸對稱知識點總結(jié)
下面是小編為了幫助同學們學習數(shù)學知識而整理的初二上冊數(shù)學軸對稱知識點總結(jié),希望可以幫助到同學們!
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關于某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(_,y)關于_軸對稱的點的坐標為(_,-y)
點(_,y)關于y軸對稱的點的坐標為(-_,y)
點(_,y)關于原點軸對稱的點的坐標為(-_,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的'中線互相重合,簡稱為“三線合一”。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內(nèi)角相等,等于60°,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
13.直角三角形中,30°角所對的直角邊等于斜邊的一半。
14.直角三角形斜邊上的中線等于斜邊的一半
由小編整理的初二上冊數(shù)學軸對稱知識點總結(jié)就到這里了,希望同學們喜歡!