- 目錄
-
第1篇初二數(shù)學(xué)整式的乘除與因式分解知識(shí)點(diǎn)總結(jié) 第2篇初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié):整式的乘除與因式分解 第3篇初中數(shù)學(xué)因式分解知識(shí)點(diǎn)總結(jié) 第4篇七年級(jí)數(shù)學(xué)下冊(cè)《因式分解》知識(shí)點(diǎn)總結(jié) 第5篇2023中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):因式分解 第6篇初中數(shù)學(xué)因式分解的一般步驟知識(shí)點(diǎn)總結(jié) 第7篇初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):因式分解 第8篇因式分解-數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 第9篇因式分解的知識(shí)點(diǎn)總結(jié) 第10篇初中數(shù)學(xué)乘法與因式分解的知識(shí)點(diǎn)總結(jié) 第11篇眾數(shù)和因式分解的知識(shí)點(diǎn)總結(jié) 第12篇初中數(shù)學(xué)因式分解的知識(shí)點(diǎn)總結(jié)
【第1篇 初二數(shù)學(xué)整式的乘除與因式分解知識(shí)點(diǎn)總結(jié)
一.定義
1.整式乘法
(1).am·an=am+n[m,n都是正整數(shù)]
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
(2).(am)n=amn[m,n都是正整數(shù)]
冪的乘方,底數(shù)不變,指數(shù)相乘.
(3).(ab)n=anbn[n為正整數(shù)]
積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘.
(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
(5).m(a+b+c)=ma+mb+mc
單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,
(6).(a+b)(m+n)=am+an+bm+bn
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相乘.
2.乘法公式
(1).(a+b)(a-b)=a2-b2
平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
(2).(a±b)2=a2±2ab+b2
完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2倍.
3.整式除法
(1)am÷an=am-n[a≠0,m,n都是正整數(shù),且m>n]
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
(2)a0=1[a≠0]
任何不等于0的數(shù)的0次冪都等于1.
(3)單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
(4)多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
4.把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.
二.重點(diǎn)
1.(_+p)(_+q)=_2+(p+q)_+pq
2._3-y3=(_-y)(_2+_y+y2)
3.因式分解兩種基本方法:
(1)提公因式法.提取:數(shù)字是各項(xiàng)的公約數(shù),各項(xiàng)都含的字母,指數(shù)是各項(xiàng)中最低的.
(2)公式法.
①a2-b2=(a+b)(a-b)兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積
②a2±2ab+b2=(a±b)2兩個(gè)數(shù)的平方和加上[或減去]這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和[或差]的平方.
【第2篇 初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié):整式的乘除與因式分解
一.定義
1.整式乘法
(1).am·an=am+n[m,n都是正整數(shù)]
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
(2).(am)n=amn[m,n都是正整數(shù)]
冪的乘方,底數(shù)不變,指數(shù)相乘.
(3).(ab)n=anbn[n為正整數(shù)]
積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘.
(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
(5).m(a+b+c)=ma+mb+mc
單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,
(6).(a+b)(m+n)=am+an+bm+bn
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相乘.
2.乘法公式
(1).(a+b)(a-b)=a2-b2
平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
(2).(a±b)2=a2±2ab+b2
完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2倍.
3.整式除法
(1)am÷an=am-n[a≠0,m,n都是正整數(shù),且m>n]
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
(2)a0=1[a≠0]
任何不等于0的數(shù)的0次冪都等于1.
(3)單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
(4)多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
4.把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.
二.重點(diǎn)
1.(_+p)(_+q)=_2+(p+q)_+pq
2._3-y3=(_-y)(_2+_y+y2)
3.因式分解兩種基本方法:
(1)提公因式法.提取:數(shù)字是各項(xiàng)的公約數(shù),各項(xiàng)都含的字母,指數(shù)是各項(xiàng)中最低的.
(2)公式法.
①a2-b2=(a+b)(a-b)兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積
②a2±2ab+b2=(a±b)2兩個(gè)數(shù)的平方和加上[或減去]這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和[或差]的平方.
【第3篇 初中數(shù)學(xué)因式分解知識(shí)點(diǎn)總結(jié)
關(guān)于初中數(shù)學(xué)因式分解知識(shí)點(diǎn)總結(jié)
(1)因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式。
(2)公因式:一個(gè)多項(xiàng)式每一項(xiàng)都含有的相同的因式叫做這個(gè)多項(xiàng)式的公因式。
(3)確定公因式的方法:公因數(shù)的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)的相同字母,而且各字母的指數(shù)取次數(shù)最低的。
(4)提公因式法:一般地,如果多項(xiàng)式的各項(xiàng)有公因式可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法。
(5)提出多項(xiàng)式的公因式以后,另一個(gè)因式的確定方法是:用原來(lái)的多項(xiàng)式除以公因式所得的商就是另一個(gè)因式。
(6)如果多項(xiàng)式的第一項(xiàng)的'系數(shù)是負(fù)的,一般要提出“—”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的,在提出“—”號(hào)時(shí),多項(xiàng)式的各項(xiàng)都要變號(hào)。
(7)因式分解和整式乘法的關(guān)系:因式分解和整式乘法是整式恒等變形的正、逆過(guò)程,整式乘法的結(jié)果是整式,因式分解的結(jié)果是乘積式。
(8)運(yùn)用公式法:如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法。
(9)平方差公式:兩數(shù)平方差,等于這兩數(shù)的和乘以這兩數(shù)的差,字母表達(dá)式:a2—b2=(a+b)(a—b)
(10)具備什么特征的兩項(xiàng)式能用平方差公式分解因式
①系數(shù)能平方,(指的系數(shù)是完全平方數(shù))
②字母指數(shù)要成雙,(指的指數(shù)是偶數(shù))
③兩項(xiàng)符號(hào)相反。(指的兩項(xiàng)一正號(hào)一負(fù)號(hào))
(11)用平方差公式分解因式的關(guān)鍵:把每一項(xiàng)寫成平方的形式,并能正確地判斷出a,b分別等于什么。
(l2)完全平方公式:兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。字母表達(dá)式:a2±2ab+b2=(a±b)2
(13)完全平方公式的特點(diǎn):
①它是一個(gè)三項(xiàng)式。
②其中有兩項(xiàng)是某兩數(shù)的平方和。
③第三項(xiàng)是這兩數(shù)積的正二倍或負(fù)二倍。
④具備以上三方面的特點(diǎn)以后,就等于這兩數(shù)和(或者差)的平方。
(14)立方和與立方差公式:兩個(gè)數(shù)的立方和(或者差)等于這兩個(gè)數(shù)的和(或者差)乘以它們的平方和與它們積的差(或者和)。
(15)利用立方和與立方差分解因式的關(guān)鍵:能把這兩項(xiàng)寫成某兩數(shù)立方的形式。
(16)具備什么條件的多項(xiàng)式可以用分組分解法來(lái)進(jìn)行因式分解:如果一個(gè)多項(xiàng)式的項(xiàng)分組并提出公因式后,各組之間又能繼續(xù)分解因式,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式。
(17)分組分解法的前提:熟練地掌握提公因式法和公式法,是學(xué)好分組分解法的前提。
(18)分組分解法的原則:分組后可以直接提出公因式,或者分組后可以直接運(yùn)用公式。
(19)在分組時(shí)要預(yù)先考慮到分組后能否繼續(xù)進(jìn)行因式分解,合理選擇分組方法是關(guān)鍵。
【第4篇 七年級(jí)數(shù)學(xué)下冊(cè)《因式分解》知識(shí)點(diǎn)總結(jié)
七年級(jí)數(shù)學(xué)下冊(cè)《因式分解》知識(shí)點(diǎn)總結(jié)
第三章 因式分解
1。因式分解
定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,這種變形叫因式分解。 即:多項(xiàng)式幾個(gè)整式的積 例:a_b_
13131
_(ab) 3
因式分解是對(duì)多項(xiàng)式進(jìn)行的一種恒等變形,是整式乘法的逆過(guò)程。 2。因式分解的方法:
(1)提公因式法:
①定義:如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫成因式乘積的形式,這個(gè)變形就是提公因式法分解因式。
公因式:多項(xiàng)式的各項(xiàng)都含有的相同的因式。公因式可以是一個(gè)數(shù)字或字母,也可以是一個(gè)單項(xiàng)式或多項(xiàng)式。
系數(shù)——取各項(xiàng)系數(shù)的最大公約數(shù)
字母——取各項(xiàng)都含有的字母
指數(shù)——取相同字母的最低次冪
例:12a3b3c8a3b2c36a4b2c2的公因式是
解析:從多項(xiàng)式的系數(shù)和字母兩部分來(lái)考慮,系數(shù)部分分別是12、—8、6,它們的最大公約數(shù)為2;字母部3232分a3b3c,a3b2c3,a4b2c2都含有因式abc,故多項(xiàng)式的公因式是2abc。
②提公因式的步驟 第一步:找出公因式;
第二步:提公因式并確定另一個(gè)因式,提公因式時(shí),可用原多項(xiàng)式除以公因式,所得商即是提公因式后剩下的另一個(gè)因式。
注意:提取公因式后,對(duì)另一個(gè)因式要注意整理并化簡(jiǎn),務(wù)必使因式最簡(jiǎn)。多項(xiàng)式中第一項(xiàng)有負(fù)號(hào)的,要先提取符號(hào)。
例1:把12ab18ab24ab分解因式。
解析:本題的各項(xiàng)系數(shù)的最大公約數(shù)是6,相同字母的最低次冪是ab,故公因式為6ab。
解:12ab18ab24ab
6ab(2a3b4a2b2)
例2:把多項(xiàng)式3(_4)_(4_)分解因式
解析:由于4_(_4),多項(xiàng)式3(_4)_(4_)可以變形為3(_4)_(_4),我們可以發(fā)現(xiàn)多項(xiàng)
式各項(xiàng)都含有公因式(_4),所以我們可以提取公因式(_4)后,再將多項(xiàng)式寫成積的形式。 解:3(_4)_(4_) =3(_4)_(_4) =(3_)(_4)
例3:把多項(xiàng)式_22_分解因式
解:_22_=(_22_)_(_2) (2)運(yùn)用公式法
定義:把乘法公式反過(guò)來(lái)用,就可以用來(lái)把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法。
a。逆用平方差公式:a2b2(ab)(ab)
b。逆用完全平方公式:a22abb2(ab)2
c。逆用立方和公式:ab(ab)(aabb(拓展))
d。逆用立方差公式:a3b3(ab)(a2abb2(拓展))
注意:①公式中的字母可代表一個(gè)數(shù)、一個(gè)單項(xiàng)式或一個(gè)多項(xiàng)式。
②選擇使用公式的方法:主要從項(xiàng)數(shù)上看,若多項(xiàng)式是二項(xiàng)式可考慮平方差公式;若多項(xiàng)式是三項(xiàng)式,可考慮完全平方公式。
例1:因式分解a214a49
解:a14a49=(a7)2
例2:因式分解a2a(bc)(bc) 解:a2a(bc)(bc)=(abc) (3)分組分解法(拓展)
①將多項(xiàng)式分組后能提公因式進(jìn)行因式分解; 例:把多項(xiàng)式abab1分解因式
解:abab1=(aba)(b1)=a(b1)(b1)(a1)(b1) ②將多項(xiàng)式分組后能運(yùn)用公式進(jìn)行因式分解。
例:將多項(xiàng)式a2ab1b因式分解
解:a2ab1b
=(a2abb)1(ab)1(ab1)(ab1)
2_ (4)十字相乘法(形如(pq)_pq(_p)(_q)形式的多項(xiàng)式,可以考慮運(yùn)用此種方法)
方法:常數(shù)項(xiàng)拆成兩個(gè)因數(shù)p和q,這兩數(shù)的和pq為一次項(xiàng)系數(shù)
_2(pq)_pq
_2(pq)_pq(_p)(_q)
例:分解因式_2_30 分解因式_252_100 補(bǔ)充點(diǎn)詳解 補(bǔ)充點(diǎn)詳解
我們可以將—30分解成p×q的形式, 我們可以將100分解成p×q的形式, 使p+q=—1, p×q=—30,我們就有p=—6, 使p+q=52, p×q=100,我們就有p=2, q=5或q=—6,p=5。 q=50或q=2,p=50。
所以將多項(xiàng)式_2(pq)_pq可以分 所以將多項(xiàng)式_2(pq)_pq可以分 解為(_p)(_q) 解為(_p)(_q)
_
_5
_2
—6
_50
_2_30(_6)(_5)
3。因式分解的一般步驟:
_252_100(_50)(_2)
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的`多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明
確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
一、 例題解析
提公因式法
提取公因式:如果多項(xiàng)式的各項(xiàng)有公因式,一般要將公因式提到括號(hào)外面。 確定公因式的方法:
系數(shù)——取多項(xiàng)式各項(xiàng)系數(shù)的最大公約數(shù);
字母(或多項(xiàng)式因式)——取各項(xiàng)都含有的字母(或多項(xiàng)式因式)的最低次冪。 例 1 分解因式:
⑴15aab
2n1
10abba(n為正整數(shù))
2n
⑵4a2n1b6an2b1(、n為大于1的自然數(shù))
鞏固 分解因式: (_)2n1(_z)(_)2n2(_)2n(z),n為正整數(shù)。
例 2 先化簡(jiǎn)再求值,____2,其中_2,2
求代數(shù)式的值:(3_2)2(2_1)(3_2)(2_1)2_(2_1)(23_),其中_。
3
1. 2
22221
例 3 已知:bca2,求a(abc)b(cab)c(2b2c2a)的值。
33333
公式法
平方差公式:a2b2(ab)(ab)
①公式左邊形式上是一個(gè)二項(xiàng)式,且兩項(xiàng)的符號(hào)相反; ②每一項(xiàng)都可以化成某個(gè)數(shù)或式的平方形式;
③右邊是這兩個(gè)數(shù)或式的和與它們差的積,相當(dāng)于兩個(gè)一次二項(xiàng)式的積。 完全平方公式:a22abb2(ab)2 a22abb2(ab)2 ①左邊相當(dāng)于一個(gè)二次三項(xiàng)式;
②左邊首末兩項(xiàng)符號(hào)相同且均能寫成某個(gè)數(shù)或式的完全平方式;
分解因式:_3(_z)(za)_2z(z_)_2(z_)(_za)。
③左邊中間一項(xiàng)是這兩個(gè)數(shù)或式的積的2倍,符號(hào)可正可負(fù);
④右邊是這兩個(gè)數(shù)或式的和(或差)的完全平方,其和或差由左邊中間一項(xiàng)的符號(hào)決定。 一些需要了解的公式:
a3b3(ab)(a2abb2) a3b3(ab)(a2abb2) (ab)3a33a2b3ab2b3 (ab)3a33a2b3ab2b3
【第5篇 2023中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):因式分解
因式分解
用待定系數(shù)法分解因式
余式定理及其應(yīng)用
余式定理
f(_)除以(_-a)的余式是常數(shù)f(a)
因式:如果一個(gè)次數(shù)不低于一次的多項(xiàng)式因式,除這個(gè)多項(xiàng)式本身和非零常數(shù)外,再也沒(méi)有其他的因式,那么這個(gè)因式(即該多項(xiàng)式)就叫做質(zhì)因式
因式分解:把一個(gè)多項(xiàng)式寫成幾個(gè)質(zhì)因式乘積形式的變形過(guò)程叫做多項(xiàng)式的因式分解
1 提取公因式法
2 運(yùn)用公式法
3 分組分解法
4 十字相乘法
5 配方法
6 求根公式法
公式(a的立方=a^3;a的平方=a^2)
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a平方+2ab+b平方
完全平方差公式: (a-b)平方=a平方-2ab+b平方
兩根式: a_^2+b_+c=a[_-(-b+√(b^2-4ac))/2a][_-(-b-√(b^2-4ac))/2a]兩根式
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
【第6篇 初中數(shù)學(xué)因式分解的一般步驟知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)因式分解的一般步驟知識(shí)點(diǎn)總結(jié)
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的'公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
【第7篇 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):因式分解
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):因式分解
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的.因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
【第8篇 因式分解-數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
因式分解-數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的'關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
【第9篇 因式分解的知識(shí)點(diǎn)總結(jié)
因式分解的知識(shí)點(diǎn)總結(jié)
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的.因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
【第10篇 初中數(shù)學(xué)乘法與因式分解的知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)有關(guān)乘法與因式分解的知識(shí)點(diǎn)總結(jié)
因式分解把一個(gè)多項(xiàng)式化為幾個(gè)最簡(jiǎn)整式的積的'形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫作分解因式。接下來(lái)為大家整合的是初中數(shù)學(xué)乘法與因式分解知識(shí)點(diǎn)總結(jié)。
乘法與因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
知識(shí)拓展:乘法與因式分解在數(shù)學(xué)求根作圖方面有很廣泛的應(yīng)用。
以上便是小編為大家整合的初中數(shù)學(xué)乘法與因式分解知識(shí)點(diǎn)總結(jié),希望對(duì)大家有用哦
【第11篇 眾數(shù)和因式分解的知識(shí)點(diǎn)總結(jié)
眾數(shù)和因式分解的知識(shí)點(diǎn)總結(jié)
上海初中數(shù)學(xué)眾數(shù)知識(shí)點(diǎn)歸納
簡(jiǎn)單的說(shuō),眾數(shù)就是一組數(shù)據(jù)中占比例最多的那個(gè)數(shù)。
眾數(shù)的定義:
是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,叫眾數(shù),有時(shí)眾數(shù)在一組數(shù)中有好幾個(gè)。用m表示。
用眾數(shù)代表一組數(shù)據(jù),可靠性較差,不過(guò),眾數(shù)不受極端數(shù)據(jù)的影響,并且求法簡(jiǎn)便。在一組數(shù)據(jù)中,如果個(gè)別數(shù)據(jù)有很大的變動(dòng),選擇中位數(shù)表示這組數(shù)據(jù)的“集中趨勢(shì)”就比較適合。
當(dāng)數(shù)值或被觀察者沒(méi)有明顯次序(常發(fā)生于非數(shù)值性資料)時(shí)特別有用,由于可能無(wú)法良好定義算術(shù)平均數(shù)和中位數(shù)。例子:{雞、鴨、魚(yú)、魚(yú)、雞、魚(yú)}的眾數(shù)是魚(yú)。
眾數(shù)是樣本觀測(cè)值在頻數(shù)分布表中頻數(shù)最多的那一組的組中值,主要應(yīng)用于大面積普查研究之中。
一組數(shù)據(jù)中的眾數(shù)不止一個(gè),如數(shù)據(jù)2、3、-1、2、1、3中,2、3都出現(xiàn)了兩次,它們都是這組數(shù)據(jù)中的眾數(shù)。
概念介紹
一般來(lái)說(shuō),一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)就叫這組數(shù)據(jù)的眾數(shù)。
例如:1,2,3,3,4的眾數(shù)是3。 但是,如果有兩個(gè)或兩個(gè)以上個(gè)數(shù)出現(xiàn)次數(shù)都是最多的,那么這幾個(gè)數(shù)都是這組數(shù)據(jù)的眾數(shù)。
例如:1,2,2,3,3,4的眾數(shù)是2和3。
還有,如果所有數(shù)據(jù)出現(xiàn)的次數(shù)都一樣,那么這組數(shù)據(jù)沒(méi)有眾數(shù)。
例如:1,2,3,4,5沒(méi)有眾數(shù)。
在高斯分布中,眾數(shù)位于峰值。
眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù),是一組數(shù)據(jù)中的原數(shù)據(jù),而不是相應(yīng)的次數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系的定義:
在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為_(kāi)軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的.掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【第12篇 初中數(shù)學(xué)因式分解的知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)因式分解的知識(shí)點(diǎn)總結(jié)
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:
①結(jié)果必須是整式
②結(jié)果必須是積的形式
③結(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的'因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:
①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。
②相同字母取最低次冪
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。
②確定商式。
③公因式與商式寫成積的形式。
分解因式注意事項(xiàng):
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。